

KC9532 1MHz…4GHz Quad-channel Synchronous Sampling Power Meter Communication Protocol

Version V1.1

科新社 二〇二二年四月

1 Overview	1
1.1 Ports	1
1.2 Protocol Format	2
1.2.1 Address Domain	2
1.2.2 Function Domain	2
1.2.3 Data Domain	2
1.2.4 Big Endian or Small Endian	3
2 Protocol Format Details	3
2.1 Acquire Current Settings	3
2.2 Acquire the Measured Values	4
2.2.1 Command Format for Reading Input Register	5
2.2.2 Acquire Measured Data in Channel 1	6
2.2.3 Acquire Measured Data in Channel 2	7
2.2.4 Acquire Measured Data in Channel 3	7
2.2.5 Acquire Measured Data in Channel 4	8
2.3 Acquiring and Adjusting the Settings	8
2.3.1 Command Format for Reading Holding Register	9
2.3.2 Command Format for Writing a Single Register	.10
2.3.3 Acquire and adjust measuring parameters in channel 1	. 11
2.3.4 Acquire and adjust measuring parameters in channel 2	. 12
2.3.5 Acquire and adjust measuring parameters in channel 3	. 13
2.3.6 Acquire and adjust measuring parameters in channel 4	. 13
2.4 Acquire the Auxiliary Info of Equipment	. 14
2.4.1 Acquire the temperature of the equipment	.14
2.4.2 Acquire software version	. 15
2.4.3 Acquire serial number	. 15
2.4.4 Acquire USB and 485 voltage	.15
2.5 Adjust Auxiliary Parameters	. 15
2.5.1 Adjust the address of equipment	.16
2.5.2 Adjust 485 port's baud rate	. 16
2.5.3 Restore to Factory	. 17

目录

1 Overview

1.1 Ports

Pic 1-1 shows the ports' logic of KC9532.

KC9532 comes with a RS-485 port and an USB Type-C port. (Abbreviated as 485 and USB)

The 485 port utilises Modbus-RTU protocol to communicate with the host computer. KC9532 plays the role of the slave machine waiting for commands from the host before matching the address and returning the corresponding data. The adjustable Baud rate range of the 485 port is 9600-460800, and the default is 115200.

USB port is mainly used to acquire system information, connecting the host computer and remote upgrading. Since the communication address and the Baud rate of 485 port is adjustable, the Baud rate of USB port is fixed to 115200 to acquire the information like the adjusted address as well as the new Baud rate.

1.2 Protocol Format

KC9532's 485 port obeys standard Modbus-RTU protocol format, as shown in Pic 1-2.

1 Byte	1 Byte	0~252 Bytes	2 Bytes
Address	Function	Data	CRC check
domain	domain	domain	

Pic 1-2

1.2.1 Address Domain

Address domain is mainly used by the host computer to select equipment. The default address of KC9532 is 0x01.

1.2.2 Function Domain

Function domain is mainly used for those specific functions of the equipment. The list below shows the function domains supported by KC9532.

Code (Hexadecimal)	Function	Description
0x03	Read holding register	Acquire option values
0x04	Read input register	Acquire measured values
0x06	Write single register	Configure a certain setting

List 1-1 Function domains supported by KC9532

When an unsupported function code is sent, KC9532 sets the highest bit of function code to 1 and sets 0x01 in the data domain, to represent an error.

For example, the host computer sends 01 01 00 00 00 08 3D CC , yet KC9532 doesn't support this function, so 01 81 01 81 90 will be returned.

1.2.3 Data Domain

Data domain comprises of option address and option content, as shown in Pic 1-3.

2 Bytes	0~250 Bytes
Option	Option
address	data

Pic	1-3
	1 0

Currently, all the option data the option address (register address) correspond to are multiple of 2 Bytes.

Whenever the address sent by the user is mistaken, KC9532 sets the highest bit of function domain to be 1, and returns 0x02 to represent an address error. For example, the host computer sends 01 04 01 0A 00 02 50 35, yet KC9532 cannot find 0x010A data address in input register, in this case it returns 01 84 02 C2 C1. When the user sends a mistaken option data, KC9532 will set the highest bit of the function domain to be 1 and will return 0x03 to represent a parameter error. For example, the host computer sends 01 04 01 00 01 61 F6 , yet KC9532 requires a minimum amount of register requested to be 2. So it returns 01 84 03 03 01 .

1.2.4 Big Endian or Small Endian

KC9532 adopts big-endian mode to return data. Data 0x1234 would be returned as 0x12, 0x34.

2 Protocol Format Details

2.1 Acquire Current Settings

Every time KC9532 is booted, it returns the information about the equipment through USB. User can acquire it with normal serial port software.

To acquire system info, connect USB port with serial port software and set parameters as below.

Baud rate: 115200 Stop bit: 1 Data bit: 8 Parity bit: None

KC9532 return the info as below after connected to power:

product: KC9532 Version:1.3 Address:0x1 RS485 baud rate:115200

Product name, software version, address and 485 port's baud rate are returned, and user can connect 485 port precisely with this info.

2.2 Acquire the Measured Values

Each channel of KC9532 returns data as it's shown below.

Data	Description	Unit	Data Type
Peak value	Max power within a unit	dBm/mW	Single-precision
	sampling time		floating point
Average Value	Average power within a unit	dBm/mW	Single-precision
	sampling time		floating point
Mean square	Effective power within a unit	dBm/mW	Single-precision
root value	sampling time		floating point
Peak-to-average	The ratio of peak value to mean	/	Single-precision
ratio	square root value within a unit		floating point
	sampling time		
Pulse width	The duration time of high	us	Single-precision
	signal within a single pulse		floating point
	period		
Duty ratio	The ratio of high signal	%	Single-precision
	duration time to period time		floating point
	within a single pulse period		
Repeat cycle	The duration time of a single	us	Single-precision
	pulse period		floating point

List 2-1 Measured Data Types

To acquire measured data in the channel, 0x04 function domain (read input register) is uniformly adopted. Note that a specific address is bound to each data value in each channel. Below describes the detail of acquiring the data in channel 1, and the method of acquiring other channels' data resembles this one.

The default unit for peak value, average value and mean square root value is dBm, to change unit please refer to <u>chapter 2.3.3</u>.

2.2.1 Command Format for Reading Input Register

According to standard Modbus-RTU protocol format, the command format of reading input register is shown below.

Data domain				
1 Byte	1 Byte	2 Bytes	2 Bytes	2 Bytes
Address domain	Function domain	Register address	Request size of data	CRC check
Pic 2-1 Request Format of Host Computer Data domain				
1 Byte	1 Byte	1 Byte	0~251 Bytes	2 Bytes
Address domain	Function domain	Return size of data	Data contents	CRC check

Pic 2-2 Response Format

Note: The size of request data from the host computer refers to the amount of 2-Byte data requested. A request size value of 2 represents the host computer will get a 4-Byte return.

A single measured data in KC9532 would be stored as single-precision floating point, whose size is 4 Byte. For this reason, the user must specify the request data size to be 2, otherwise a warning for parameter error would be returned.

2.2.2 Acquire Measured Data in Channel 1

Data	Data register address
Peak value	0x0101
Average value	0x0102
Mean square root value	0x0103
Peak-to-average ratio	0x0104
Pulse width	0x0105
Duty ratio	0x0106
Repeat cycle	0x0107

The addresses of data registers of channel 1 are shown below.

List 2-2 Addresses of Data Registers in Channel 1

For example, the peak value in channel 1 is desired, the request from the host and the return from the slave would be like this:

Pic 2-3 Request from the host for peak value in channel 1

Pic 2-4 The returned data of peak value request in channel 1

As shown above, the peak value of channel 1 is -6.871568 dBm.

User can probably figure out the resemblance between this example and requesting other data in channel 1, since the only difference is the data register's address.

As for the data content, it's worth noting that pulse width, duty ratio and repeat cycle would only return valid data when a pulse signal is detected. Otherwise, 0xffffffff would be returned, representing no pulse signal is present.

2.2.3 Acquire Measured Data in Channel 2

Data	Data Register
	Address
Peak value	0x0201
Average value	0x0202
Mean square root value	0x0203
Peak-to-average ratio	0x0204
Pulse width	0x0205
Duty ratio	0x0206
Repeat cycle	0x0207

The data in channel 2 and their addresses is shown below:

List 2-3 Addresses of Data Registers in Channel 2

As for the format of requesting and returning of the data in channel 2, please refer to

<u>chapter 2.2.1</u>.

2.2.4 Acquire Measured Data in Channel 3

The data in channel 3 and their addresses is shown below:

Data	Data Register
	Address
Peak value	0x0301
Average value	0x0302
Mean square root value	0x0303
Peak-to-average ratio	0x0304

Pulse width	0x0305
Duty ratio	0x0306
Repeat cycle	0x0307

List 2-4 Addresses of Data Registers in Channel 3

As for the format of requesting and returning of the data in channel 3, please refer to

<u>chapter 2.2.1</u>.

2.2.5 Acquire Measured Data in Channel 4

The data in channel 4 and their addresses is shown below:

Data	Data Register
	Address
Peak value	0x0401
Average value	0x0402
Mean square root value	0x0403
Peak-to-average ratio	0x0404
Pulse width	0x0405
Duty ratio	0x0406
Repeat cycle	0x0407

List 2-5 Addresses of Data Registers in Channel 4

As for the format of requesting and returning of the data in channel 4, please refer to <u>chapter 2.2.1</u>.

2.3 Acquiring and Adjusting the Settings

Acquiring and adjusting the settings can be done by function domain 0x03 (read

holding registers) and 0x06(write a single register).

Parameter	Description	Unit	Default	Adjustable	Data
			Value	Range	Туре
Central	The frequency of	MHz	2450	1~4000	Signed
frequency	the external		MHz	MHz(1MHz	16 bits
	signal to be			stepping)	integer
	measured				
External	External	dB	0 dB	-200~+200	Signed
attenuators or	attenuators or			dB(0.1dB	16 bits
amplifiers	amplifiers for			stepping)	integer
	compensation				
Cable power	To compensate	dB	0 dB	-200~0dB(0.1dB	Signed
dissipation	power dissipation			stepping)	16 bits
	caused by cable				integer

Adjustable parameters in each channel of KC9532 is shown below:

C 11 C	T1 C 4	NATT	2450	1 4000	C' 1
Cable frequency	The frequency at	MHZ	2450	1~4000	Signed
dissipation	which cable		MHz	MHz(1MHz	16 bits
	dissipation			stepping)	integer
	occurs				
Sampling time of	Time duration for	S	180 ms	10ms~10s	Signed
peak sampling	each peak			(10ms stepping)	16 bits
	sampling				integer
Sampling time of	Time duration for	S	180 ms	10~10s	Signed
average sampling	each average			(10ms stepping)	16 bits
	sampling				integer
Sampling time of	Time duration for	S	180 ms	10~10s	Signed
mean-square-root	each			(10ms stepping)	16 bits
sampling	mean-square-root				integer
	sampling				
Single pulse	Time duration for	S	100 ms	1ms~3s	Signed
sampling time	each pulse			(1ms stepping)	16 bits
	sampling				integer
Power threshold	A pulse signal	dBm	-20	-51~+9	Signed
of pulse	whose power is		dBm	dBm(1dBm	16 bits
	greater than this			stepping)	integer
	value would be				
	deemed as valid				
Power unit	The unit of the	/	0	0 : dBm	Signed
	returned data can		(dBm as	1 : mW	16 bits
	be set		default)		integer

List 2-6 Adjustable Parameters of Each Channel

Parameters for measuring are identical between each channel. Below would show the detailed settings in channel 1.

Note: When step is 0.1dB, the value should multiply by 10.

For example, user send 50 for "External attenuators or amplifiers" parameter means the actually value is 5dB.

2.3.1 Command Format for Reading Holding Register

According to standard Modbus-RTU protocol, the command format for reading holding register is shown below.

		Data d	domain	la
1 Byte	1 Byte	2 Bytes	2 Bytes	2 Bytes
Address domain	Function domain	Register address	Request size of data	CRC check
	Pic 2	-5 Request from Data o	Host Jomain	n.
1 Byte	1 Byte	1 Byte	2 Bytes	2 Bytes
Address domain	Function domain	Return size of data	Data contents	CRC check

Pic 2-6 Response

Note: The size of request data from the host computer refers to the amount of

2-Byte data requested. A request size value of 2 represents the host computer will get a 4-Byte return.

The data stored in each register is of the size of 2 Byte. For this reason the data request from the host needs to be size 1, so that to obtain a size 2 data response in response frame from KC9532.

2.3.2 Command Format for Writing a Single Register

According to standard Modbus-RTU protocol format, the command format for writing a single register is shown below.

	1		L	1
1 Byte	1 Byte	2 Bytes	2 Bytes	2 Bytes
Address domain	Function domain	Register address	Write data	CRC check

Data domain

Pic 2-7 Request from host

	5	Data o	domain	L.
1 Byte	1 Byte	2 Bytes	2 Bytes	2 Bytes
Address domain	Function domain	Register address	Return data	CRC check

Pic 2-8 Response

The resemblance between the request and the response is clear, which can serve as

an echo.

Likewise, the data written is also 2-Byte.

2.3.3 Acquire and adjust measuring parameters in channel 1

The addresses of measuring parameters of channel 1 is shown in the list below.

Parameter	Parameter register address
Central frequency	0x0101
External attenuator	0x0102
Cable power dissipation	0x0103
Cable frequency dissipation	0x0104
Single peak sampling time	0x0105
Single average sampling time	0x0106
Single mean-square-root	0x0107
sampling time	
Single pulse sampling time	0x0108
Pulse power threshold	0x0109
Unit of power	0x010A

List 2-7 Addresses of adjustable parameters in channel 1 Acquire central frequency in channel 1:

Pic 2-9 Host request for central frequency

Pic 2-10 Response

Adjust central frequency of channel 1:

Assume that the central frequency of channel 1 is 3500MHz, then the data would look like this.

The process of acquiring and adjusting other parameter registers resemble the process above.

2.3.4 Acquire and adjust measuring parameters in channel 2

The addresses of measuring parameters of channel 2 is shown in the list below.

Parameter	Parameter register address
Central frequency	0x0201
External attenuator	0x0202
Cable power dissipation	0x0203
Cable frequency dissipation	0x0204
Single peak sampling time	0x0205
Single average sampling time	0x0206
Single mean-square-root	0x0207
sampling time	
Single pulse sampling time	0x0208
Pulse power threshold	0x0209

Unit of power				0x0	20A	ł	
T' (O O A 11	c	1.	. 1 1		•	1	1 0

List 2-8 Addresses of adjustable parameters in channel 2

As for the protocol format of the measuring parameters in channel 2, please refer to <u>chapter 2.3.3</u>.

```
2.3.5 Acquire and adjust measuring parameters in channel 3
```

The addresses of measuring parameters of channel 3 is shown in the list below.

Parameter	Parameter register address
Central frequency	0x0301
External attenuator	0x0302
Cable power dissipation	0x0303
Cable frequency dissipation	0x0304
Single peak sampling time	0x0305
Single average sampling time	0x0306
Single mean-square-root	0x0307
sampling time	
Single pulse sampling time	0x0308
Pulse power threshold	0x0309
Unit of power	0x030A

List 2-9 Addresses of adjustable parameters in channel 3

As for the protocol format of the measuring parameters in channel 3, please refer to

<u>chapter 2.3.3</u>.

2.3.6 Acquire and adjust measuring parameters in channel 4

The addresses of measuring parameters of channel 4 is shown in the list below.

Parameter	Parameter register address
Central frequency	0x0401
External attenuator	0x0402
Cable power dissipation	0x0403
Cable frequency dissipation	0x0404
Single peak sampling time	0x0405
Single average sampling time	0x0406
Single mean-square-root	0x0407
sampling time	
Single pulse sampling time	0x0408
Pulse power threshold	0x0409
Unit of power	0x040A

List 2-10 Addresses of adjustable parameters in channel 4

As for the protocol format of the measuring parameters in channel 4, please refer to <u>chapter 2.3.3</u>.

2.4 Acquire the Auxiliary Info of Equipment

Info	Description	Unit	Data Type
Temperature	Since the equipment produces	°C	Single-precision
of the	heat itself, this info is for		floating point
equipment	reference only.		
Software	The info can also be acquired	/	Unsigned 32-bit
version	from USB port.		integer
Serial	The info can also be acquired	/	Unsigned 32-bit
number	from USB port.		integer
USB voltage	The supply voltage of USB port.	V	Single-precision
			floating point
485 voltage	The supply voltage of 485 port.	V	Single-precision
			floating point

The auxiliary info of KC9532 is shown below.

List 2-11 Auxiliary info list

The acquisition of auxiliary info is achieved by reading the input registers, the addresses are shown below.

Info	Register address	
Equipment temperature	0x0501	
Software version	0x0502	
Serial number	0x0503	
USB Voltage	0x0504	
485 Voltage	0x0505	

List 2-12 Auxiliary info registers addresses

The data length of the auxiliary info is 4 Byte as well, so the length of the request should be of 2 registers.

2.4.1 Acquire the temperature of the equipment

Pic 2-12 Request temperature

Pic 2-13 Response of the temperature

The returned temperature data is 45.75° °C.

2.4.2 Acquire software version

The response data of software version is a 32-bit unsigned integer. To get the real

version, user needs to divide this response value by 10.

For example:

Request: 01 04 05 02 00 02 D0 C7

Response: 01 04 04 00 00 00 0D 3A 41

The version data is 0x000000D, which means 13 in decimal. Make this value

divided by 10, that is 1.3, which means the current version is V1.3

2.4.3 Acquire serial number

The serial number data of KC9532 is an unsigned 32-bit integer. User can directly

deem this value as the serial number.

2.4.4 Acquire USB and 485 voltage

The data of USB and 485 voltage are both floating point, user should just treat them with the floating-point way.

2.5 Adjust Auxiliary Parameters

···J ·····························				
Parameter	Description	Data Type		
Address of	The range is 1-247. After reboot, USB port will	Signed 16 bits		
equipment	output the new address as string.	integer		
485 port	Designed to be adjustable to fit in different	Signed 16 bits		
baud rate industrial environments with a maximum value of		integer		
	460800. After reboot, USB port will output the			
	new baud rate as string.			

The adjustable auxiliary parameters of KC9532 are listed below.

Restore to	Restore all the settings to default.	/
factory		

List 2-13 Auxiliary parameters list

Likewise, the adjustment of the auxiliary parameters are achieved by writing a

single register. The list of registers is shown below.

Parameter	Registers' address	Adjustable range
Address of equipment	0x0501	1-247
485 port baud rate	0x0502	See the list below
Restore to factory	0x0503	/

List 2-14 Auxiliary parameters' register

The data length of these registers is 4 Byte, so the request length made by user should be 2 registers.

2.5.1 Adjust the address of equipment

The new address becomes valid after rebooting.

For example:

change the equipment's address to 0x05.

Pic 2-14 Request and Response

The address becomes 0x05 after next boot.

2.5.2 Adjust 485 port's baud rate

The list below shows the available baud rate values.

Data value	Corresponding baud rate
0x0000	9600
0x0001	14400
0x0002	19200
0x0003	38400
0x0004	57600

0x0005	115200
0x0006	128000
0x0007	256000
0x0008	460800

List 2-15 Data values and their corresponding baud rate

New baud rate setting becomes valid after next boot.

For example,

set the baud rate to 460800 would be like.

means set baud rate.

Pic 2-15 Request and Response of setting baud rate 460800 Next time it boots, the baud rate will become 460800.

2.5.3 Restore to Factory

After sending restore to factory request, the equipment would restore all the

settings to default and reboot immediately.

Pay attention: There will not be any response since the equipment reboots itself

immediately.

Pic 2-16 Request for restoring to factory sent by the host

[The END]